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Abstract

A number of applications require the precise tracking er positior estimation of an
object unxesclved in the system optics. This paper evaluates several (NxN) centrcid-like
interpolation algoxithms (N=2,3,4,5) designed to make these estimates to subpixel accuracy-
Analytiz and Monte Carlo results are presented. The tracking sensor examined was a ssaring
mosalc array (100% coverage assumed! of detectors assumed to be device-noise (e.g., CCD
neise) limited. The detector size was varied parametrically to determire the relative
performance and to obtain the optimum configuration. The optics blur spot was assumed
Gaussian. The scurces of error considered to affect the algorithm performance were the
systematic algorithm bias (or positional errer), the random noise {or jitter error),
and the postcalibration residual detector responsivity nenuniformities. The results
were applied to the design of the SIRTF Pine Guidance Sensor.

Track accuracy improves with signal-to-noise ratio (SNR), until limited by algorithm
inaccuracies or focal-piane nonuniformity. But blur spot distertion has significant impact
on algerithm perfarmance.

Among the algerithms tested, the relative SNR performance improved as N decreased.
However, extreme sensitivity te algorithm bias errer limited the use of the (2x2) algorithm
to cases with positional requirements Z L/25 {(even with correction). The (3x3) algorithm
is then optimum for positional requirements 3 L/100 (with correctien). Highex (NxN) algo-
rishms are required for greater positional accuracy.

Intreduction

Mosaie foecal plane arrays ace particularly suitable for point-source pesition estimation
in astronomical, tracking, surveillance, alignment and optical wavefront sensocs. often
the sensor focal plane is designed primarily or sclely for beat individual detector sensi=-
tivity or for good performance with one specific position estimation {interpolaticon) algo-
rithm. This work reports the results of designing a mosaic star sensor for SIRTF and
cptimizing the.track (interpolation) algerithms for the best aceuracy in spot position
determination and least relative sensitivity to aberrations or optical distortions. It
ineludes supporting Monte Carlo results.

The performance of several algorithms fox point-source positien estimation uSing a
mosaic array of detectors was guantified for various noise sources and blur spot dister-
vions, with detector size as a variable. The algorithm performance analysis was then
confirmed with Monte Carle simulations.

The tracking problem undertaken will first be described. The scurces of erxox will
then be defined and quantified. The results of parametric variations of.the tracking
detactor size and blur spot shape will be given. The confirming results of Monte Carlo
simulation will then be reported, followed by a discussion of the implication of the
work done for optimum SIRTF tracker focal-plane design.

Star trackers are often star imagers with visible guadrant cell or mosaic focal plane
arrays. The quadrant cell has limited tracking dynamic range and can be operated essen-
tially only as a null sensor. 1t, thus, requires that the object being observed by the
telescope also de a suitable star-like object for. trackiag by the star sensor. This
is not always the case as for extended visible sourxces or for many infrared sources of
interest ta SIRTF. The use of visible mosaic arrays in a staring star sensor significantly
expands -the tracking dynamic range and allows the use of off-axig guide stars for tracking
infrared or extended scurces.

These types of designs have been considered in previous development work in the SIRTF
program. Werk on this problem has been reported, much of it in connection with the design
of star sensors with CCD-based readouts. Coxt performed Monte Carlo studies of point-
source image tracking three-peint algorithms as a function of sigaal-to-noise ratio (SNR)
{assuming that the limiting noise was that of the ¢CD), focal-plane filkl factor, and
the ratioc of spot size te detector size. The present paper provides analytic and Monte
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Carlo simulations for several diffexent centrgid algorithms, allewing a comparison of
relative SNR performance. Cassidy and Kaplan? have emphasized the importance of sensor
calibration: wunless the optics distortion and the focal-plane nonuniformities can be
removed from the data, the desired spot positicn accuracies often cannot be cbtained.
dennison and Stantend and Salomon and Glavich4 have alsc considered the adverse effects
of optical distortiocn on position estimates for a visible star sensor (these papers also
refer to previous Jet Propulsion Laboratory studies), The present paper analyzes the
various sampling errors (algorithm bias exxrors) inherent in the various interpolation
routines. Though they can be suppressed with correctien functions, the efficiency of
the correctien varies with the choice of algarithm. Purthermore, the varicus algarithm
sensitivities to optical (blur spot) distortion is also compared. We also evaluated
the limitation placed on performance by focal-plane nonuniformities, thus quantifying
the calibration accuracy requirements.

This analysis allows a more complete comparison of the varicus algorithms, since in
some cases the SNR performance is most critical: in other cases, the suppression of
sampling error is most critical; and in yet other cases, relative immurity <o klur spot
distortion (cver fields of view or with optical distortion) may be mest critical. We
have included all those considerations in this work.

Problem definitien

All the track algorithms considered estimate the position either of the peak or of
the centzoid of the image of a point scvree. The simplest means of estirating the positicn
of the peak of the blur spot is to use 2 detector array and assume that the target is
at the center of the detector element with the largest signal. This ccaxse form of position
determination, however, is never more accurate than approximately one-third the detector-
to-detectox spacing, irrespective of the signal-to-ncise ratio. This accuracy can be
increased significantly by use of an interpolation procedure in conjunction with the
irdicated coarse search procedure. Aprropriate interpolation proceduzes are the subject
of this investigation.

The Baseline point-spread function or optics blur spot was assumed t¢ be a symmetrie

Gaussian with the half-width o. The Gaussian point-spread function is described by
- 'w° 2 a b3

I(x,y) —_3;;r(-(x +yi)/20%), N
where X(x,¥) is the intensity at (x,y) of a target blur spot centered at the origin,
and Wy is the total pewer in the blur spot. All sires and spacings are in arbitrary
units which will be normalized to the detector size, If diffraction-limited, the Airy
spot is related -to the Caussian representation by 2/2p = 1.2a/d. 1 is the average spectral
wavelength of interest, and 4 is the diameter of the optical aperture. The Gaussian
blur spot is more tractable mathematically than the Airy spot, and is also an excecllent
approximation to its central porticn, which is the region of interest. Furthermore,
any smearing of the blur spot from optical aberrations or a wide spectral band will make
the resultant blur spot shape tend toward a Gaussian.

The focal plane design assumed in this analysis is a close~packed mosaic array of
visible detectors, such as a backside-illuminated (100% coverage) CCD mosaic. The sensor
cperates in the staring mode (staring at the star scene). The blur spot (point spread
functiecn) diameter is two to six detector lengths (L). Each detector is assumed to have
a flat responaivity within the detector outline and none cutside.

The photon flux at the detector is that due to the flux from the point source blur
spot. Because we are considering stax sensor design, any background is considered neg-
ligible. The detectors are integrating-type detectors, such as those fabricated in CCD’s.
For baest analytic compariscn, the detectors were assumed device-noise (C¢D-noise) limited
with an equal noise level for all elements. Signal shet-noise limited pecformance was
also considered (as shown in the results) but was found to not significantly change the
conclusions of the design.

The detector with the maximum signal Sy o defines the "coarse track” pesition and
establishes the origin for the interpolation. The signal output Sn,m Of an individual
detector n and m spacings from the origin is the integral of the point-source blur spot
centexed near the origin times the detector responsivity over the area of the detectors:

Worti - H 2
- Noitine +nkL~ {x+nl-
Sn,m ¥ T 35,7 _[[ dxdy exp [-(—’-‘-n—é‘;éi‘—)—:l exp [- ﬁz:"éu“] Ry(x,y) (2)
where tise is the inteqration time and r is the detector responsivity. The detector -
responsivities are assumed repeatable with a mean value of r (per unit area) and a normai-
ized shape of Ry (x,y).
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Assuming a flat responsivity across the area of the detector and sharp edges makeg
Ryix,y) equal to one inside the detector (which is a square of side L) and zere outside.

The resulting signal cutput becomes

erf [ /%a (L{a+k) -~ Ax)] - erf [:%: (Li{n-3) - Axﬂ;

s A, By L, 0)mRE
n‘m( X,48Y.L,0 202

! 1 (Lim-k) - & ﬂl= WortineH(n,ex,L,o)H(m,ay,Lo0),  (3)
erf|—=— (L(m+y) - Ay)| = exf | —=— < Y oXtint 8%, Lo 28Y, L.
[/50 v Y] [m |
where erf(z) is the error function,
~2

erflz) = 2 ,/ at exn(~t?), (%)
~
)
and Hin,sx,L,0) is a one-dimensional £illing factor accounting for the detector offset
and finite size (in one dimension). The maximum possible signal obtainable is defined

as S4{L) = $o,0(0,0,L,0)- In this case a2 function C{L), depending only on L and p, can
be defined:

c(L) = H{o,0,L,0) = erf < L )l (s)
26 ./3

The maximum sional can be defined in terms of C{L) as

SolL) = WerC?(L)ting. (6)

Only pseudo-ene-dimensional or rectilinear centroids for position estimation were con-
sidered. The centroids were taken aleny the axis of interest with signal sumning along
the perpendiczular axis. The two axis information is, thus, separately determined.

In these interpolation algorithms, the estimated offset from the origin is defined
as 4xa. The "true" offset is Ax. We will henceforth normalize the offsets 4xg and result-
ant errors to units of detector size L. Thus, the offsets AXe, 4X and the errors are
given as fractions of a detector size L. The interpolatien algorithms considered yield
estimates that can be written as ratios of sums of weighted signals from & set range
of pixels:

4N N

Z f.'xsﬂ,m
(7}

aXe * AT-N ‘m=-N
2; 2; 9;sn,m

If the point spread furction is separable as discussed above (but not necessarily circularly
symmetric), the offset estimate reduces to

txe = & £a8(n,ax,L,0) , | (8)
Egnﬂ(nlﬁx'L,O) '
n

where the sum along the perpendicular axis drops out for separable peint spread funetions,

For the centroid, the signals are weighted by the distance from the origin by defining
f5 =n. The signal strength is normalized out by defining g, = 1. Other classes of algo~
rithms are in the process of being considered® which, for example, fit the data to’ a curve
and determine the position of the peak of the curve. The simplest of these is the least-
squares fit of a parabola tc the data points. FPor the three-point, least-squares. fit,
fn = and dn = ("2'4,-2).

These algorithms are to be distinguished from the thresholding and centroiding algoe-
rithms that tend to be used with resolved. non-peaked target images. For a well-defined
and peaked function such as a point-spread function, the use of a technique based on a
peak pixel sedrch and a fixed N-point algorithm is preferred over a technique based on
a threshold search and a centroid of all pixels above the threshald. The former technique
prevents the spurious inclusion of outlying noisc spikes.

The optimization of the tracking array detector size for each algorithm was based on
simultaneously optimizing two competing pexformance factors: the individval detector SNR
and the track accuracy. Maximum track accurac¢y is obtained when the error in the positjoen
estimate Ax is minimum. The sources of error considered ware systematic algorithm errcr,
random noise, and residual detectcr responsivity roauniformities after calibration.
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The systematic algorithm erxzor or bias was calculated, and its rms value over an array
pitch was used as one measure of estimation error. The randem noise in the cabput signal
was propagated by variance analysis into another component of estimation errcr. finaliy,
the residual nonuniformities in the detector responsivities after calibration were propa-s
gated by variance analysis and Monte Carlo analysis into an rms spread in tha algorithnm
error and provided a third source of error.

The SNR error term is often considered the fundamental parameter for minimization
in the cptimization of an array configuration. Thus, the smallest algerithm, a (2x2 square)
diffegence or "centroid" algorithm, is sometimes the only one considered or is sonsidered
the baseline. However, performance with respact to the other sources of error: algorithm
pias errer or nonuniformity error or sensitivity Lo blur spot distertion, must alsd be
considered and compared, The trxade must include all these errors - in which cas2 tne
two-point algorithm is noct necessarily the best.

Sources of erroy

Al¢gorithm ersor

The fundamental source o0f inaccuracy is that of the algorithm itself (here called alge-
rithm error, or bias). Even given very accurate data, most algerithms predict peak posi-
tions diffarent from she actual positiens. Algorithm error is systematic and pradictable
for a known blur spo: shape. It cculd, therefore., theoretically ke eliminated with a
‘compensating or correction algorithm. This. however, can be done successfully only when
the algerithm error is Larger than the other (random) sources of errcz and determinable.
rurchermore, the effectiveness of the correctisn algerithm to suppress the algorithm
bias ervor and the algorithm sensitivity to blur spot distortion varies with the choice
of algerithm (and, thus, the choigse of correction algorithm). For example, if correction
algorithms of compazable complexity (of look-up table size) can suppress the exror by a
tactor ef 10, then the algorithms with the amaller original error will have the smaller
residual error. Furthermoxe, as shown in the rasults, the higher the spatial frequency
components making up the error, the more difficult it is to correct.

The algorithm arrer is found by calculating the signals for a known cffset 4x. from the
algorithm [Eq. (7} or !8}], and then determiniag the difference between ax and aXe. The
magnitude of this ercor varies with the offset Ax (Fig. l)}. The symmetries of both the
blur spot signal factor H(n,ix,L,0) and the algorithm coefficients €n.§n 2are such that
Axe is antisymmetrical in ax. Because of this symmetry, the mean errcr over the full
range of offsets (from .-§/2 to P/2) is zero. The rms value is, therefcre, used as a
measure ¢f the error for the optimization.

Another source of algorithm error is systematic intracellular nonuniformities repeated
within each detector element., Responsivity nonuniformities within the detector elements
are difficult to accousnt for analytically. But if the nonuniformity is known and repeated
from cell tocell (as when the detector edges are not considered sharp, but smeothly
rounded), then its effect may be incerporated into the predicted offset signal and,
thus, into the offset (4x,). Thus, Eg. (8) is solved: but now all the Sp are the more
complicated ocutputs of the blur spot carrelated with a nonflat-response function. This,
then., preduces a change in the algorithm bias. This change may increase or decrease
the net bias error and as defined is also systematic.

$ignal-te-ncigse error

Another impertant source of error is that due to finite SXR. Noise introduces uncer-
tainty in the data values, which propagates into an uncertainty in the knowledge of the
peak positioen. Becanse SNR values in star sensor systems may be very low, this may
be the dominan® source of error. Variance analysis was used to determine the uncertainty
in the algcrithm output as a function of sigaal uncertainty (noise!. The uncertainty in
the position estimate (Ax,a)} is measured by its standard deviation:

apx = vari(axe) = S? y (315521) varSp,m ‘5 . {9)
n M A3Sy,m

where each signal is considered an independent variable, and the noise is assumed to
be uncorrelated. The specific equation for the estimated positicn [from Eq. (7)] results
n

1
£7 9a5n,m
nm

)
opy ™ varilaxe) = XX(kn‘gn 3”e> varSp,m ik . (13)

nm

’
o

where £,,9n are the algorithm coefficients.
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The factor varSpy n in Egs. (92) and (10) is the square of the detector roise Neegp. It
is-the same for all detectors and can, therefore, be factored out of the sum of the
equations. The maximum signal Sg(L) can be incorporated inmto the denominator, resulting in

N, H PN
- 5 _ [Ycen \ clir)/Hle, 8y, ,0) Ty . i
Gax = vari{ixg) (SQ(L) 7T SaRlR, A%, L, 0) X ﬁ% (fn-gn axa) (11)
nm
It is obvious that the noise error [Bq. (11)] contains the inverse of a signal~to~ncise

ratic. We could simply define the signal-to~noise ratio as the ratio of the maximum
possible signal on a single detector, S5iL), to the single datector device {or CCI)
noise level Neep. The noise lavel Noep is assumed the same for all detectors. The
regulting signal-to-neis= ratio would be

SNR = SolZ) (12)
Neen

This is not the actual SNR oceurring at any detecter but is the maximum possible
SNR which would resul: if the blur spot were centered on that detector.

However, one of the goals of this analysis is to determine the detector size that
minimizes the noise~induced error in the peak position estimate. One cannot just minimize
the factors multiplying the inverse signal-tc-noise ratio described in Eq. (11) because
"there is still a size depandence in the signal-tao-noise ratio. 1In order to optimize

the size and spacing of the detectors. this dependence must be explicit. The area depen-
ence of Sg5(L) has alzeady been given in Eq. (3). The CCD noise. is .independent of the
detector area. Thus, one can easily define a new SNR factor consisting of the effective
“tota)l signal” due to the total blur spot divided by the noise on one detector. This
eliminates the dependence on the detector count in the algorithm and allows a valiad
cemparison for centroids of different detector counts. ’

HWoftine _ _SNR
Neco ey (13)

SNRy =

The resulting SNR error becomes

. 1 .
Gax = vars’(Axe) = SRR, 1 ?V ¥ lfn-9p Axe]‘z l; (14)

5 InH(n, Ax,L,0 )RR, 3Y,L.0) |p p
anm

Both qu. (11) and (l4) clearly show that the error in the peak position esuimatc varies
as SNR™L.

A different neise source would have required a different analysis.s For instance,
including & signal shot-noise would have required an additional noise source

SNR
N ~<NCCD*+sn,m>% = Neep (1+ Ncc: H(n,Ax.L,a)H(m.Ay,L,o)) % {15)

where now we must be explicit that both the signal, Sn,m¢ and the noise, Nggp., are ia
units of charge. The equivalent signal shot-noise is represented by

Nn,m = [NCcDSNRoH(n,ax,L)K(m,ay,L) 1% {16}

Nonuniformity error

Variation in responsivity from detector to detector is a third important source of
uncertainty. Much of the detector-to-detector response variation in mean responsivity
can be removed with a gain and offset calibration. The residual nonunifermity, typically
} to several percent, acts as a limit to the accuracy of the data points and, therefore,
of the predicted position. The uncertainty due to residual responsivity nonuniformity
can be calculated frem a derivation that is similar to that for the SNR unecertainty,
provided that the residue is assumed random.

The residual uncertainty in the responsivity can be represented as a fractional uncerg-
tainty in r:

Laley _ vaghr
§ = S0 = T (17)
The variance of the signal (from £g. (3)] becomes .
. T
= var r
VarSn'm shlm -——-T——r - = sf’l‘méz . (18)
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on jnto* the variance of the position estimate {Eq. (10)) results in

oy s : (Y
= = 4 X ‘;} (f,-9n &Xa! H‘(n,ax,L,o)H‘(m,Ay.L,o)(‘
¥ JgpHln,ox,Loo)Him,ay, L, 0} )

B

tnm (19)

ility is again assumed (Eg. (4)}.

Tctal effest of error sources on algoritam accuracy

=ha errors, the total uncertaiaty in the prediction of tha oeak signal pesi-
liraction}) is
Az(L;°4AX)

: PptiLoanet )T, t20)
SNRS J

taxa(ox) = <BZ(L,0,EX) +

2 error a* Ax due te algorithm dias or inherent algorithm inaccuracy, A 1s a

factor at Ax (containing all the detector size Zependence) for the signal-~to-

and b is a configuration factor at Ax for the error due to the residual
{after calibratien} in the mean responsivity from detector to detector.

cking loop is closed around the sensor, helding the blur spot to the center of

. great accuracy, then the error is essentially that occurring around ax = C:

A (L,0,0) | 3 2\ h
# =£7:-ﬂ'-—'—" - L, )
e ( ETTE) 2°{L,0,0}$ (21

‘orithm oias coes to 2ero 2t the origin by symmetry. This equation should
.lore to ogtimize the configuration design. The slope of the algorit:

*, at 4x = ¢ can be considered the ratio of the error in the estimated position

in the actual position at the null point and, thus, must alsc be incladed.
the ercor in the estimated position gy, to the error in the actual pesitien
oint and, thus, nust also be included. The ratio

/dB(L,a.Ax]

= apxl0) rye) =0 | {22)

ax
:ized for the smallest uncertainty about Ax = 0. Qur analysis did not,
sue the closed-loop behavicr because that is only appropriate for a null
as 2 quad cell) and was not considered to fulfill the needs of the SIRTF

ne sensor was considered to run open loop. The senscr estimated the position
urce without tracking i%, giving the image an equal probabiliey of falling
.in a pitch. The error averaged over a whole interval should then be used

of expected performance. In that case, the mean of A and D and the standard
B (whose mean is 0 by symmetry) can be used.

2

i1 indicates that the sensor accuracy versus SNR should show two asymptotic

wvicr. The SNR error dominates for low SNR values with a SNR™Ll dependence
ficiently high values, it falls below the level cf the algorithm bias erro:.

‘rection algorithm is used to guppress the systematic algorithm ergor, the
ultimately be limited by the residual algorithm bias error or a constant
or calibration erxcr.

Parametric analysis of performance behavior

'S error sources are evaluated separately. The cenfiguration evaluated
-packed sase where the detector center-to-center spacing is also the detector
star sensors or tracking sensors a certain field=-of-view (FOV) must be

m available CCD configurations, or focal plane design limitations, this

‘nt places a fcotprint. size requizement on the detector element. Thus the
print or effective size, L, is constrained. However, if the detector sizes
‘an the diffraction-limited point spread functien, the blur spot size can
:larged) to obtainr the best match for performance.

zazion of the SNR error is of special importance when dealing with sensors,
sensors and imaging sensors, observing 'external™ sources. Sensors with
urces such as those in alignment or wavefront sensing systems have more

the signal strenoth (SNR factor) and are, thus, optimized almost solely

to the other sources of error {(prirarily the algorithm bias error). Furthex-
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meore, these alignment or tracking seasors may be in systems where the blur sgot size

is predetermired (for instance, diffracticn-limited) and rhere is relatively small FOV
coverage. TFor the optimizatcion of thece sensors, therefore, the following analysis
would be more useful if the results were presented in units of blur spct diameter rather
than the "inverse" units of detector size.

SNR erroxr performance

Taking the SNR performance inte initial consideracion, Pig. 2 shows the averaged
SNR factor A [Eq. (23)] for several different algorithms as a function of blur spot
size relative to the detector size_{where the blur spot size is considerad 4y2; from
Eq. {1)j. The performance factor A is in units of detector size L. The gencral benavior
for all algerithms is an improvement in performance as tha blur spot dacreases in size
until a saturation occurs at about the point that the algorithm gate {NxN detectors)
just covers the blur spot. Decreasing the size further results in ne further improvereat
relative to the SHR performance. Thus, the SNR pehavier is one factccr in limiting the
size of the blur spor.

The INR behavisar (A) can be asymptotically approximated for laxge klur spot sizes
by noting that all the signals in the denominator in Bgq. {l4) can be approximated by
the sum cf an exponential times the detector size {EBgq. (2) or (3) for small L)

(35 (fn-9n 2xe) "), 2.5 . .

4 L S N TRt LL. e
57 6n Se (L) WWoTting | ° 3

B

A = opyx SNRy =

g

where A {or oyx! is normalized teo units of detector length. N is 4he number of points
in an NxN centreid and g, - 1. fThe result .mplies that the SNR error factor guickly
goes up as the area of the blur spot.

The saturation behavior at the lower blur spot sizes shows an expected improvement
in performance as the detector count decreases |fewer sources cof CCD noisa). This asymp-
totic behavior can be evaluated explicitly for small blur spet sizes by letting the sum in
the denominates in Eq. (14) ¢a to unity {(complete coverage cf the blur spot by the
algerithm gate) and summing the £, and g in the nuaserator with an assumad value for
1 of - 1/12.These correspond to the limits in the figure.

Thus, with respect to signal-to~noise performance, the eften used (2x2) poiat algoerithm
is the best - with a 40% improvement over the next best (3x3) peint algorithm. However,
we will show that for many sensor designs that factor of 2 may not be the deciding factor

in the choice of algorithms.

Algorithm Bias Error Performance -

These star sensers and other point source sensors are required to determine the geo-
metric position of a peint souzce to some aceuracy over the whole field~ef-view. Thus,
even if the jitter (SNR errer) is reduced sufficiently, there is still a pesiticnai
or bias tequirement. This is precisely the algorithm_bias error discussed earlier.
Fig. 3 shows the {rms) averaged algorithm bias error B (from Eq. (23)} in unics of detector
size L, as & function of blur spot size (which is also in units of detector size).

Almost the inverse behavior ccgcuxs. The fewer peints in the algorithm, the larger the
minimum in algorithm error and the narrower the operating range. This occurs because
the larger count centroids do a better simulation of a continuous ¢entroid. The conver-
qence of all the algorithms for small blur spot sizes occurs bhocause only the difference
between the innermost pair of detectors is of significance irrespective of how many
detectors are used in the algorithm.

For all the algorithms, the region of minimal errozr tends to occur in the saturatior
region of SNR performance (compare Fig. 3 te Fig. 2). Thus, design of the sensor to
minimize algorithm bias error (B) for a particular algorithm will automatically obtain
optimum SNR performance. Howaever, this optimum blur spot size is different for different
algorithms - thus, making the choica of algorithm @f critical importaaze., The (2x2!
point algorithm has the best SNR performance - but at the cost of the worst algoriti
bias error. The ) point algorithm has a factor of i worse SNR performance but has signifi-
cantly better algorithm bias erxor performance. If extreme positional accuracy is re-
quired, this better performance may be critical.

Algorithm bias error is a fixed, systematic error that can be suppressed by calibration
procedures. However, as we will show, this reduction of the error is not perfect, has’
glaring limitations and, effectively, conly tends to reduce the scale in Fig. 3, not
changing the order of the performance. The (3x3) peint algorithm remains significantly
better than the (2x2) point algorithm from the standpoint of algorithm bias error.
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A computer evaluation of the prediction of the offset by several interpoelatior proce-
dures for a typical case was showa in F.g. 1. The elgorithms are not perfect in their
predicizon but may have crrors that can be corrected with a minimum of effort such as
a small look-up table, or preferably, with simple correction functions suech as a linear
scale factor

ax;, = (l+3)ixe : (25
or a sihusoidal ccrrection

Axa = AXg ¥ 35in(7axge) (26)
The simplie lirear scale factor is, of course, the easisst correction to make.

The major issue then bacomes: what is the sensitivity of this correcticn algerithm
{or look-up tacle) to changes in blur spot size cr blur spot shape? These changes can
easily occur as the optics distorts due tc thermal gradients or - mush more significantly -
as the spot varies across the field-of-view (FCV) of the sensor. 1If there is a great
sensitivity to the blur spot distortion, then the calibration becomss unwieldy (many
field points must be avaluated in detail), the compttational requirements go up signifi-
cantly aad quickly (a very large look~up table becomes required) and the stability require-
ment becones extreme,

Pigs. 4, 5, and 7 show thke significance of this concern. They shaw the aigorithm
bias error at the optimum blur spot size as a function of offset for circular spots
and spots with only :20% distortion aleng one axiz (R = 0.8 or 1.2).

Fig. 4 is for the (2x2! algorithm and shows a very distorted error with extreme erraors
nueh larger than the average. Linear and sine corrections did not succeed in reducing
the error. Oaly a direect look-up table for the undistorted spot was at all useful.
However, a 20% distertion was sufficient to nullifv the effect of the look-up tadle
resalting in errors nearly as large as without correcticn. 7Thus, the (2x2) peine algerithm
is very sensitive to blur spot distortion which could rasent difficultias in sensor
design with significanet FOV's,

Fig. 5 is for the {3x3) algorithm and shows a moderate erxor that is nearly linzar,
Tig. 6 shows that the blyr spet size of minimum error (diameter = 2,3L) is also the cross-
over peint between a simple linear error (for larger blur spot sizes) and a simple sinu-
scidal-like estor (for smaller blur spot sizes). Thus, this error is easily functionally
correctable and even if .the blur spot size were not optimum, the correction could still
be a simple linear scale factor or a simple sine term. Purthermore, if the spot distorss
by elongation, the simple ‘linear correction . is more effective over a iarger distortien
range. Furthermore, {f the distortion can be estimated - such as a coma ~ the linear
scale factor can be treated in a simple manner as a function dependent on FOV position -
incxeasinng its effectiveness.

Fig. 7 shows the even better performance oceurring with 2 {4x4) point algorithm,
The penalty is in tha significantly higher SNR factor (Pig. 2).

These performance ranges for the various algorithms are quantified in Fig. 8. The
rms-averaged uncorrected algorithm bias errors as a function fo blur spet distortion
are shown as the solid lines. The algozithm bias error after application af the above
mentioned correcticn procedures are shown in the dashed lines. Note, however, that
w2 are as yet only considering elongation along one axis only. Radial eiengation in
the FOV has not yet been considered in this analysis but will be incorporated in the
future.

Uncorrected, the (2x2) algorithm error is significantly worse than the (3x3) peint.
Zvan with correction. the range of effectiveness of the correction is much rarrower
than for the (3x3) point. If there is signal power to spare, then the (5x5) point alge-
rithm is very insensitive to distortion ard would be the preferred algorithm,

This chart also indicates the expected limiting algorithm bias performance ef the
various algorithm candidates. Assuming verv good o tics and a narrow enouch FOV resulting
in only $1C% kElur spot vaciation over the FOV, a (2x2) algorithm will perterm tc a level
of * 1/30 a detector {or ~ 1/100 a blur spot) accuracy witnout correction. With a2 leok-up
cable correction, the limiting accuracy may become * 1/50 detector. The (3x3) algorithm
will have a limiting performance of - 1/75 a detector for ~ 1/290 a blur spotr) uncortecsﬁd.
With corzection, the limiting performance will be * 1/200 a detector. The (4x4} and
{5x5) algorithms will be better than 1/300 a detector (or /600 a blur spot).
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However, if the FOV is large enough that the blur spot may have significant variatien,
the (2x2) algerithm degrades much quicker than the (3x3) algorithm, For axample, if
a coma-like distortion of 850% is allowed, the average performance of the (2»2) algoristhm
is " 1/15 a detector uncorrected and ~ 1/22 a detectox corrected. The {3x3) point algo-
rithm, on the other hand, has a limiting accuracy of ~ 1/37 detecter uncorrected (> 2 times
as good) and ~ 1/60 detector corrected (° } times ae goedl). If there is sufficient signal,
tha (Sx5) algorithm still has > 1/300 detecter accuracy while uncorrected.

Thus, the poorer algorithm bias performance of the (2x3) algorithm may limie ite

usefulness in the design of point-source tracking sensors. If the taxternal sources
2re weak (high magnitude stars, for example) and the pesitional accuracy requirement
is not teo great. +hen the 3SNR performance takes precedence aand a (2x2) algorithm shouls
be used. If the positional accuracy reguirement is sufficiently stringent and/or the

lur spot distortiosn is not insignificant, then a {3x2} algorithm shculd be used (the
SNR performance, may have to be regained by a larger optics aperture). If +he positiona)
accuracy requirement is extreme, then a {(dx4) or even a (5x5) algorithm will have to
be used. These results will be applied towards the SIRTF star sensor in the neaxt sec-iorn,

Nonunifcrmity error performance

The tms responsivity nonuniformity errsr facter for the various algerithms as a function
of blur spot size is shown in Fig. 9. Comparing the nonunifermity factor to the algorithm
errer indicates the levels at which the nenuniformity degracation begins to deminate.

- If the algarithm bias, especially with a good correction algerithm, is sufficiently

small, thea the nonuniformity errer will be the residual system error. Even this errer
can be reduced with responsivity calibration. 1Its level, therefore, has impact on whether
a point-by-point detector calibratien is required, and if it is, then to what levei

cf accuracy. Only the high spatial fraquency component of the nenuniformity is relevant
(the nonuniformity within a range of N detectors fer a NxN algorithm) and is typically

1% - 4% for visible CCD's.

Fig. 9 indicates that for visible CCD's of typical 1% to 4% local nonuniformities,
the nonuniformity errors will not be of significance (even with algerithm bias correctien)
for cthe (2x2) or (3x3) algorithms. Thus, detailed point=by-point responsivity calibration
will only be required fcr extreme pointing requizements which alse require (4x4) or
(5x5) algorithms. This does not apply to point-by-point electronics offset subtracticn
(fixed patrtern suppression), or t©o mosaics with larger nenunifermities (such as IRCCD's).

Monte Carle results

A Monte Carlo simuiation of the peak locatien algorithms in the cross-scan direction
was performed to determine the limits of the validity of the variance analysis and to
more completely evaluate the effects of the coarse search procedure and the responsivity
nonunifermity. The data to be fitted wera one set of detector outputs where the blur
sSpot was assumed centered on the array. The blur spo: was assumed Gaussian and offset
Ax from the cester of the central detector. The Monte carlo program generated statistical
ensembles of focal planes wicth varying amounts of. responsivity nonuniformity. Six focal
planes were generated for each of five levels of tms nonuniformity ranging from 0 to 431,
The program then generated a separate ‘statistical ensemble of 200 signals at each of
15 signal-to-noise ratica for each focal plane. A simple search fer the peak signal
was normally used as the cearse search procedure. However, in some Mente Carlo tests,
the origin was a priori taken at the center detector in order to separate out the effects
of the cearse track procedure. The estimated offset 4xe from the center dotector was
calculated for cach sample of the cnsemble by the interpolation procedure. The statistical
vazxiance of (axe= x) was then calculated. This error was compared to the error predicted
by the variance analysis fer the SNR uncertainty and the algorithm bias by determining
the asymptotic 1/SNR behavior for small SNR and the asymptotic coenstant level for large
SNR due to the algerithm bias (here treated as a noise).

Figure 10 shows Monte Carlo results taken assuming uniform detector responsivities.
The results confirm the SNR fagtcr and algorithm bias errer magnitudes obtained from
the variance analysis for all but the smailest signal-to=-noise ratios. For SNR valucs
I 6, the Monte Carlo results diverge from the analytic behavior. Ppart of the reasen
for the divergence i1s the pcor performance of the coarse search procedure at low SNR,
but part is because of the failure of the statistical assumptions implied by the variance
analysis. Because there is a slight offset dependence on Alax) (Pig. 11}, the analytical
result was taken from the ax = 0 and Ax = .25 cases, not the avaraged value shown in
Fig. 2.

-

Fig. 12 compares the analytic and Monte Carlo behavior with the inclusion of siqnal-'
shot noise. A low CCD noise level of 40e is assumed, There is no significant difference
at the critieal mederate SNR values where the pexformance is marginal. Even at the higher
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“.8NR values, the degradation ia performance is still moderate and still allows the perfcr-
mance to more than meet the requirement.

As noted, the Monte Carlo program was alao run for various levels of array aénuni-
formity. The ensemble spread of algorithm biases (versus nonunifermity) was compaxed
o the predicted rms spread {at the given offset) for the (3x3) algorithm. The Monte
carlo results are compatible with the statistical definition of the calculated spread

(fig. 12).

Application to the SIRTF fine gquidance zensor

The systam requiremerts are listad in Table I. The basic pointing requirements (liszed
as Top Level) were reduced to a generic design (listed as Baseline Design) in previous
SIRTF stuliess.® This cheice of FOV diameter and star magnitude sensitivity is, however,
really not fixed but is parametxically related. The FOV requirement o see two siazs
~an be derived from the stellar dersities’ and pletted versus their stellar magnitudes
(Fig. 14). Over a sufficiently large range we may consider the FOV diameter requirement
to go exponentially as the stellar magnitude (from Fig. l4, down to 10th magnitude).

Given a choize only of commercially designed CCD chips and assuming a single CCD chip
focal plane, tas angular footprint of one detector element is predstermined

. Fov . T (amn
neeo

where FOV is the angular FOV requirement and fgcp is the number of detector elements

along ona axis. The system positional accuracy requirement can be transformed into

units of a fraction of a detector. This is done in the vertical scales to the right

of Fig. 4.

tising Fig. 3 as a measure of average algorithm bias error - wheih sranslates diregtly
into positicnal error -~ we can determine if there are any limits on the range of FPOV/star
magnitude in the design. If the optics were perfect and without distortion and a TV-type
{RCA} CCC chip were used {as in the baseline®), the (2x2) algorithm would still be limited
ta FOV's smaller than 0.4 degree diameter. The senser would, thus, have to be sensitive
enough to track stars of magnitude greater than 12 to the aceuracy required. With the
same perfect optics and RCA CCD, the (3x3) algerithm would allow a choice of FOV from
the whole zange - up to 1.0 degree diameter.

However, the SIRTP opties will not be perfect in the visible, and 308 elongation
may well sccur at the edges of the FOV or due to thermal gradients. If this occurs,
the (2x2) algorithm (from Fig. 8) now limits the design to a FOV diameter < 2.3 degree
in order %5 meet the requirement at the edges of the FOV. The (3x3) algorithm still
leaves a choxce of most:of the range (FOV diameter < 0.7 degree)}.

Thus, for an RCA chip-and:.{2x2) algorithm, the choice of the swmallest FOV of tue
range (- 0.2 degree dimaeter) and tracking capability of ld4th magnitude stars is essen-
tially forced upon the design. However, we will consider (3x3) algorithms and even
the impact of using a Galileo-type (800 x £00) TI CCD chip.

For the (3x3) algorithm with the RCA chip, and for beth algorithms with the TI chip,
a range of FOV diameters - and, thus, limiting star magnitudes for tracking - is available.
Our derivation of the SNR performance obtained a result (A) in units of detector element
size L

SSNR = -%ﬁ% (28)

where now the units are, for example, angular. The signal can be normalized to thé
signal from a l4th magnitude star by

14-m

SNRp = {2.51) SNRy 4. (29)

Qver several stellar magnitudes the FOV requirement can be related ta the magnitude by

FOV = FQV)4 19(14—ml/5 (30)

Substitution of %hese two equations and Eq. {27) into Eq. (28) results in

<= FOV .
A 14 14-m (31)

= 0.53
neenp 5N314 ( )

JSNR ¥

Thus, the larger the FOV becomes (within the allowed range discussed above) - with a |
ccrresponding decrease in the required magnitude »f the quide stars - the better the
performance becomes. For the design of a (2x2) algorithm with a RCA chip., there is

g
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no range due to theilaxge algorithn bias error. The baseline design of ~ 0.25 degree

* diameter POV with sufficient sensitivity to track l4th magnitude stars then ramains the

pest choice. Heowever, the use of a (3x3) algorithm allows a largar FCV design with a
corrasponding lowex sensitivity requirement for lowex magnitude stars (limited by its
algorithm bias error). With a {3x3) algorithm design, a FOV * ¢.7 degree diameter
(assumiag no greater optical degradation at this larger FOV) aad use of m=1} guide stars
results in the cptimum design. The SNR erxoxr with this design and the (3x3) algerithm
ig 0.25 the erzor with the baseline design and the (3x3) algorithm and even 0.5 the
error of the (2x2) algorithm with the baseline design. This occurs because the m=11
stars are so much brighter.

As indicated by this analysis the finzl design configuration of the fine guigdance
sensor is highly dependant ont he performance of the optics, and a final design weculd
have to await detailed optical design with cutput of blur spot distortion ever the FOV
and thermal gradient effects. The choice of FOV and even of the algorithm are very
sensitive to the quality of the optics. With perfect, undistorted optics, the greater
SNR performance of the (2x2) algorithm would make it the theoretica. favorite. Hewever,
with realistic eptical performance, the much greater sensitivity of the (2x2) algezitha
to optical distcrtion makes the (3x3! algorithm the realistic favorite candidate.

Design of the SIRTF FGS sensor

Both the baseline design (in Table I) and the optimized variants will be congidered.
Both designs will assume optics that have blur spot deformations (such as elongaticn)

" 1ess than 30% over the whele FOV. Finally, the improvement available with a2 TI (800 x 80C)

CCD chip will alsc be evaluated. The master relation for evaluation fo the signal te
acise is
"SIGNAL" FROM BLUR Spot  RESPONSIVITY X Pgrgp X *

SNRo = —"CCp NOISE ON L DET P
S 08RC [ - A T (2.52) (260 (32)
Neeo Neeo

where ng is the optics transmission {including occultatien), Ay is the total aperture
area, 1 is the integration time, G is the detector gain. Nggp is the detectox CCD noise,
ali) is the detector quantum efficiency at the wavelength ) (er the flux of a 5900°K
blackbody which is considered the source) and m is the stellar magnitude of the guide
star (scaling down its incident flux). Most of this was taken with verification from
the previous JPL repore.

For an internal fine guidance sensor the optical aperture diameter is the SIRTF tele-
scope aperture used in a shared mode (70 cm diamater). A moderate visible transmission
{including occultation) of 36% is expected. The update rate requirement with a chopping
mode ¢f operation limiting the integration time results in a 1 :0.45 sec.

Table II shows the performance of various candidate designs. The N/A means that
irrespective of SNR performance, the FOV is too small to insurxe seeing 2 gquide staxs
in that POV. First is the expected pexformance of the baseline as~ablished on previous
studies with the (2x2) algorithm (1). It does not meee the positional accuracy requirement
because of the algorithm bias error 1 as discussed before, it is very sensitive to bluir
spot distortion. Though it only marginally misses the requirement, the other alternatives
are more attractive. Using the same baseline but a (3x3) algorithm (3) results in suffi-~
cient performance to meet the positional requizements, but the performance is too margiral
for the jitter erroer (or SNR errorl.

Changing only the FOV (5) and using the (3x2) algorithm allows a significant improve-
ment with about a facter of 3 margin in the signal collection efficiency {algorithm
bias error limited rather than SNR limited) and allows operation with 12th magnitude
(and even l3lth magnitude) stars.

The use of the large TI CCD (800 x 800) allows satisfactory performance with either
of the algorithms ((2) and (4)]. In essence, the detector footprint is now sufficiently
small with the 900 arcsec POV to generate a weak encugh position requirement (o < L/8})
to make the algorithm bias error a negligible issve. One can take advantage of the
large detector count on the chip by opening up the FOV to accommodate llth magnitude
stars (6). Using a {3x3) algorithm, the algorithm bias error is still held to 0.05
arcsec, well within spec, and the sensitivity is sufficient to meet the jitter requirement
with a factor of 100 marqgin for lleth magnitude stacs. It can even meet the requirements
using up to l4th magnitude stars.

Pinally, if the PGS is designed to be horesighted using a separate telescope, the
telescope can be made much smaller {as seen in (?7) and (8)] and the visible optical

Ak ]
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~gquality can be held under much better control and chopping technigques are hot a cenceIn.
Conclusion

In the design ¢f the SIRTF Fine Guidance Sensor (FGS), the general issues of design
optimization fo a stariag mosaic sensor for guide-star tracking and the choice of the
proper interpolation algorithm were considezed. The (2x2), (3x3), (84x&} and (85x5) centroid
interpelatien algorithms were evaluatad. Though the sensor was considerad a staring
sensor, it was not considered a nulling sersor; the guide stars would be imaged any place
within the field=of-visw (FQV) and any place on tke detector elements. The performance
was, thus, averaged over all possible offsets from the center of a detector.

The blur spots were gaussian or elongated gaussian and the detectors had anity respon-
sivity within their footprint and zero responsivity cutside (and sharp transitioens).
Because of fixed FOV requirements and limited choices of CCD's, the detector foetprints
were of fixed size and all performance parameters were evaluated in wnits of detector
size L.

The jitres error (SNR error) decreased until it satuorated at blur spot {4¢Z2) sizes
which just covered the number of detectors in the algorithm (NxN). The smaller the
number of points in the algerithm, the lower the residual SNR error. The (2x2) algerithnm
has the lowes error with akout a factor of 2 better performance than the (3x3) algorithm.

The positional error ¢r algorithm bias error has the inverse depandence with a lower
minimum error as the algorithm detector count increases. Thus, the (2x2) algorithm
has more than 2 times greater a minimum positional error than the {3x3) algorithm.

The algerithm bias ezrror can be theoretically suppressed with a correction algerithm
or a look-up table. However, the sensitivity of this correction technigque to blur spot
distortion or mismatch increases significantly as the detector count decreases. Thus,
for a (2x2) algorithm, a 10-15% distortien of the blur spet nullifies the coxzection
procedure. A (3Ix3) algorithm is less sensitive, allowing blur spot distortion out te
30-30%.

The final choice of algerithm depends on the severity of the positional accuracy
requirement and the expected variatien in the blur spot shape. The limited positional
accuracy of the (2x2) algorithm and the extreme sensitivity of its correction techniques
to blur spot distortion make the (3x3) algorithm often the one of choice. Only when
the positional accuracy requirement is very weak (2 L/20) might one consider the (2x2)
algorithm.

The SIRTF Fine Guidance Sensor (FG3) was optimized using the results of this analysis.
The baseline design marginally did not meet the performance requirements. The desicn
was optimized with lower magnjtude guide stars (12th to 13th) and a larger FOV (to insure
seeing the required twe stars for guidance) te enable all the peinting requirements
to be met. A POV : 1600 arcsec diameter, allowing l12th magnitude stars to be guide stars,
and a (3x3) algorithm is an optimized design resulting in ~ 0.08 arcsec pesitional error
and ~ 0.03 arcsec jittex error. If a Tf CCD (800 x 800) is used instead of the baseline
RCA chip, the performance requirements are easily met with almost any configuration.
The most margin occurs, however, with a design using a POV = 2300 arcsec, allowing the
use of stars down to llth magnitude as guide stars, and 2 (3x3) algorithm, resulting
in a positional error of 0.05 arcsec and a jitter error of < 0.03 arcsec for stars of
11th to 13th magnitude (and even 0.08 arcsec error for stars of lL4th magnitude). From
the design point-of-view an external FGS offers improved performance with much smaller
aperture cptics (~25 cm diameter) which, because they are dedicated optics, will have
better fiqures of merit and do not share any of the preblems of the internal guidance
sensor.
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Table 1| SUGGESTED SIRTF FGS REQUIREMENTS AND BASELINE DESIGN
TOP LEVEL:

e < 0.15-arcsee POSITIONAL (BIAS] ERROR

e s 0.1-aresec rms ERROR

o HAYE SUFFICIENT FOV AND SENSITIVITY TO ALWAYS BE ABLE TO
TRACK ON TWO STARS IN THE fOvV

e s i-s CATA RATE

SASELINE DESICN:

o FOV DIA =z 900 arcsec (15 arcmin)

e SENSITIVITY SUFFICIENT TO TRACK ON luth

MACNITUDE STARS
{MINIMUM MAGNITUDE STARS WITH DENSITY SUFFICIENT TO INSURE 22-in. FOV)
& 1 RCA CHIP (326 x 512, BUT EFFECTIVELY 320 x 320)

L
- - —_DET
rms ERROR 33

[
- biss ERROR~—2- -

e BLUR SPOT WIDTHRTWO DETECTORS

- MAY BE LARCER THAN THE DIFFRACTION LIMIT

Table 2 FGS DESIGN ALTERNATIVES

e BASELINE ————————anl—NEW row-k,_?’é:s:c"oﬁ;-e
{2 x 2) 3 x 3j

¢CD CHIP real| T2 | acall T2 | rea'|l T2 | rea 11
APERTURE DIAMETER (cm) 70 70 70 70 70 70 s2.5 |15
FOV OIAMETER {arcsec) | %00 200 %00 |00 1600 | 2300 | 1600 | 2300
Lper (arcsec) | 2.8 1.3 | 2.8 |13 |s.0 |29 5.0 2.9
ALCORITHM 2x 2] 2 x| 3 x (3 x3)|(3x3](3x3)] (3x3)]|(3x3)
ALC BIAS ERROR®
BlAs = B (arcsec) [0.16 | o0.06 fo.os Jo.o2 Joe.o8 [Jo.os Jo.08 Jooos ~
SNR_ERROR
g yr (19th MACN.)  (arcsec) J0.05 |o.01 [0.09 fo.o2 Jo1s Jo.oe | 013 Jo.20
Tgng L13tH) farcsec) [NTA I NIA | NIA |NIA 0.07 | 6.03 | o0-05 |a.o8
Tonr | 13tH) {arcaec) | NIA | N/A | NIA T |NIA .03 Jo.01 [o9.02 Jo.03
Tsnr (11 (arcsec) [N/A | N/A | N/A  |NJTA  [N/A  [<0.01 | N/A_ [<0.01

s .

- 17 2
1 ASSUME: 320 PIXELS/AXIS: 80 (e) NOISE LEVEL; TP ) = 1.9 x 10'" (efem®-s): 7 = 0.45 3: fgpy = 0.36

2 ASSUME: 800 PIXELS/AXIS; 30 (&) NOISE LEVEL: TPyy = 1.2 x 10" (erem?-s); 7 = 0,88 5: oy = 0. %

* A 301 BLUR SPOT VARIATION 1S ASSUMED AND THE WORSE CASE PERFORMANCE (AT EOCES) 1S SHOWN ~
N/A = MEANS FOV 1S NOT SUFFICIENT TO INSURE; THERE WILL 86 TWO GUIDE $TART

R
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